combinat::ribbonsTableaux – ribbon tableaux

The library combinat::ribbonsTableaux provides functions for generating and manipulating ribbon tableaux and their spin and cospin statistics. These objects are typed objects.

→ Examples

Creating Elements

combinat::ribbonsTableaux([inner, filling])

Parameters:

[inner, filling]

The inner partition and the filling of each line listed from the top to the bottom (same convention as in combinat::tableaux).

Superdomain

Dom::BaseDomain

Categories

Cat::CombinatorialClassWith2DBoxedRepresentation

Axioms

Ax::canonicalRep

Related Domains:

combinat::partitions, combinat::skewPartitions, combinat::skewTableaux, combinat::tableaux

Details:

shape – the shape of a ribbon tableau

combinat::ribbonsTableaux::shape(ribbon tableau T)

Returns the shape of the ribbon tableau T.

evaluation – the evaluation of a ribbon tableau

combinat::ribbonsTableaux::evaluation(ribbon tableau T)

Returns the number of ribbons labelled with 1, labelled 2 and so on in the ribbon tableau T.

length – the length of the ribbons in a ribbon tableau

combinat::ribbonsTableaux::length(ribbon tableau T)

Returns the length of the ribbons in the ribbon tableau T.

spinTableau – the spin of a ribbon tableau

combinat::ribbonsTableaux::spinTableau(ribbon tableau T)

Returns the spin of the ribbon tableau T.

count – number of ribbon tableaux of a given length, shape and evaluation

combinat::ribbonsTableaux::count(partition shape, integer vector eval, integer math)

Returns the number of k-ribbon tableaux of shape shape and evaluation eval.

list – list all the ribbon tableaux of a given length, shape and evaluation

combinat::ribbonsTableaux::list(partition shape, integer vector eval, integer math)

Returns all k-ribbon tableaux of shape shape and evaluation eval.

spinPolynom – the spin polynomial of the set of all ribbon tableaux of a given length, shape and evaluation

combinat::ribbonsTableaux::spinPolynom(partition shape, integer vector eval, integer math)

Returns the spin polynomial of the set of all k-ribbon tableaux of shape shape and evaluation eval.

cospinPolynom – the cospin polynomial of the set of all ribbon tableaux of a given length, shape and evaluation

combinat::ribbonsTableaux::cospinPolynom(partition shape, integer vector eval, integer math)

Returns the cospin polynomial of the set of all k-ribbon tableaux of shape shapeand evaluation eval.

StantonWhite – Stanton-White bijection

combinat::ribbonsTableaux::StantonWhite(ribbon tableau T)

Returns the k-tuple of semi-standard tableaux coming from the Stanton-White bijection.

fromStantonWhite – Stanton-White reverse bijection

combinat::ribbonsTableaux::fromStantonWhite(partition core, k-tuples of tableaux tabs)

Returns the k-ribbon tableaux corresponding to a given k-tuple of semi-standard tableaux.

Example 1:

Here, we demonstrate how to create a ribbon tableau as a typed object from its expression:

  combinat::ribbonsTableaux([[2, 1], [[2], [0, 3], [0, 0, 0], [1, 0], [0]]])

+---+

|   |

+   +---+

| 2 |   |

+   +   +---+

|   |     3 |

+---+---+---+

    | 1     |

    +---+   +

        |   |

        +---+

 

Example 2:

Counting the number of ribbon tableaux for right and skew shape:

    combinat::ribbonsTableaux::count([6,6,6,6,6,6],[3,3,3,3],3)

math

    combinat::ribbonsTableaux::count([[6,6,6,6,6,6],[3,3]],[4,4,2],3)

math

Example 3:

Listing 3-ribbon tableaux of evaluation [3,1] and shape the partition [5,4,3,2] which has as 3-core the partition [2]:

combinat::ribbonsTableaux::list([5, 4, 3, 2], [3, 1], 3)

-- +---+---+              +---+---+              +---+---+             --

|  | 1 |   |              | 1 |   |              | 1 |   |              |

|  +   +   +---+          +   +   +---+          +   +   +---+          |

|  |   |   | 1 |          |   |   | 2 |          |   |     2 |          |

|  +   +   +   +---+    , +   +   +   +---+    , +   +---+---+---+      |

|  |   | 1 |   |   |      |   | 1 |       |      |   | 1     |   |      |

|  +---+---+   +   +---+  +---+---+---+---+---+  +---+---+   +   +---+  |

|          |   | 2     |          |     1     |          |   | 1     |  |

--         +---+---+---+          +---+---+---+          +---+---+---+ --

 

Example 4:

Listing 3-ribbon tableaux of skew shape [[6,6,6,6,6,6],[3,3,3]] and evaluation [5,4]:

combinat::ribbonsTableaux::list([[6, 6, 6, 6, 6, 6], [3, 3, 3]],

[5,4], 3)

-- +---+---+---+---+---+---+  +---+---+---+---+---+---+  +---+---+---+---+---+---+ --

|  |   |   | 2 |   |   | 2 |  |   |     2 |   |   | 2 |  |         2 |   |   | 2 |  |

|  +   +   +   +   +   +   +  +   +---+   +   +   +   +  +---+---+---+   +   +   +  |

|  |   | 1 |   |   | 2 |   |  |   | 1 |   |   | 2 |   |  |   | 1     |   | 2 |   |  |

|  +   +   +   +   +   +   +  +   +   +---+   +   +   +  +   +---+   +   +   +   +  |

|  | 1 |   |   | 2 |   |   |  | 1 |       | 2 |   |   |  | 1     |   | 2 |   |   |  |

|  +---+---+---+---+---+---+, +---+---+---+---+---+---+, +---+---+---+---+---+---+  |

|              |   |   | 1 |              |   |   | 1 |              |   |   | 1 |  |

|              +   +   +   +              +   +   +   +              +   +   +   +  |

|              |   | 1 |   |              |   | 1 |   |              |   | 1 |   |  |

|              +   +   +   +              +   +   +   +              +   +   +   +  |

|              | 1 |   |   |              | 1 |   |   |              | 1 |   |   |  |

--             +---+---+---+              +---+---+---+              +---+---+---+ --

 

Example 5:

Finding the image of a given ribbon tableaux by the Stanton White bijection:

    combinat::ribbonsTableaux::StantonWhite(combinat::ribbonsTableaux

    ([[],[[4,0,0,4,4,0],[3,3,0,0,0,0],[0,0,0,3,0,0],

                            [2,0,0,2,2,0],[1,1,0,0,0,0],[0,0,0,1,0,0]]]));

Warning: Uninitialized variable 'k' used;

during evaluation of 'combinat::skewPartitions::rQuotient'

 

--     -- +---+---+  +---+---+  +---+---+ -- --

|      |  | 4 | 4 |  | 3 | 4 |  | 3 | 3 |  |  |

|  [], |  +---+---+, +---+---+, +---+---+  |  |

|      |  | 2 | 2 |  | 1 | 2 |  | 1 | 1 |  |  |

--     -- +---+---+  +---+---+  +---+---+ -- --

 

Example 6:

The first function computes the spin of a given tableau and the second one computes both the spin and the cospin polynomials for a given shape, evaluation and length:

   combinat::ribbonsTableaux::spinTableau(combinat::ribbonsTableaux(

         [[],[[4,0,0,4,4,0],[3,3,0,0,0,0],[0,0,0,3,0,0],

              [2,0,0,2,2,0],[1,1,0,0,0,0],[0,0,0,1,0,0]]]));

math

combinat::ribbonsTableaux::spinPolynom([6, 6, 6, 6, 6, 6], [3, 3, 3, 3], 3);

combinat::ribbonsTableaux::cospinPolynom([6, 6, 6, 6, 6, 6], [3, 3, 3, 3], 3)

math

math

Background:

Ribbon tableaux were first introduced by Stanton and White for counting colored permutations. With spin or cospin polynomials we can defined two math-analogues of product of Schur functions. The specialization of these functions for some values of math provide conjectures for plethystic substitutions.

Changes in MuPAD 3.1

New Function.