muEC::SYMF::SfEval – action of symmetric functions on polynomials

realizes the action of symmetric functions on polynomials

→ Examples

Call:

muEC::SYMF::SfEval(sf, expr)

Parameters:

sf

any symmetric function

expr

any expression depending on some variables

Related Functions:

muEC::SFA::SfAExpand, muEC::SYMF::SfPlethysm

Details:

Symmetric functions can be considered as operators on polynomials (math-ring structure of the ring of polynomials). Let sf be a power sum math, then muEC::SYMF::SfEval(sf, expr) computes math where

math

where math are monomials and math are scalars.

For a product of power-sums sf=p[i,j,...], muEC::SYMF::SfEval(sf, expr) is set to be equal to the product  

The definition is extended by linearity to any symmetric function sf.

Example 1:

muEC::SYMF::SfEval( p[2], 3*x*y + 2*z );

math

muEC::SYMF::SfEval( p[4,3] + q*p[2], 2*x + 3*y );

math