muEC::SYMF::SfEval – action of symmetric functions on polynomials
realizes the action of symmetric functions on polynomials
Call:
muEC::SYMF::SfEval(sf, expr)
Parameters:
| sf: | any symmetric function | 
| expr: | any expression depending on some variables | 
Related Functions:
muEC::SFA::SfAExpand, muEC::SYMF::SfPlethysm
Details:
Symmetric functions can be considered as operators on polynomials ( -ring structure of the ring of polynomials). Let sf be a power sum
-ring structure of the ring of polynomials). Let sf be a power sum  , then muEC::SYMF::SfEval(sf, expr) computes
, then muEC::SYMF::SfEval(sf, expr) computes  where
 where 

where  are monomials and
 are monomials and  are scalars.
 are scalars. 
For a product of power-sums sf=p[i,j,...], muEC::SYMF::SfEval(sf, expr) is set to be equal to the product
The definition is extended by linearity to any symmetric function sf.
muEC::SYMF::SfEval( p[2], 3*x*y + 2*z );

muEC::SYMF::SfEval( p[4,3] + q*p[2], 2*x + 3*y );
