muEC::SFA::SfAOmega – the Omega-automorphism

Compute the math-automorphism on symmetric functions.

→ Examples

Call:

muEC::SFA::SfAOmega(sfa, <alist>)

Parameters:

sfa

any symmetric function

alist

a list of alphabets

Related Functions:

muEC::PART::Part2Conjugate, muEC::SYMF::SfOmega

Details:

The muEC::SFA::SfAOmega function applies the math-automorphism to the symmetric function sfa.

This involution is defined as:

math

 

In terms of Schur functions, the involution conjugates the indexing partition.

One can apply muEC::SFA::SfAOmega solely on symmetric functions over the alphabets given in the second parameter alist.

Example 1:

muEC::SFA::SfAOmega( p[3,1](A1) - q*s[3](A2) );

math

muEC::SFA::SfAOmega( p[3,1](A1) - q*s[3](A2), [ A1 ]);

math