combinat::stirling1 – Stirling numbers of the first kind

combinat::stirling1(n,k) computes the Stirling numbers of the first kind.

→ Examples

Call:

combinat::stirling1(n, k)

Parameters:

n, k

nonnegative integers

Return Value:

an integer.

See Also:

J.J. Rotman, An Introduction to the Theory of Groups, 3rd Edition, Wm. C. Brown Publishers, Dubuque, 1988

Details:

Example 1:

Let us have a look what's the result of math written as a sum.

expand(x*(x-1)*(x-2)*(x-3)*(x-4)*(x-5))

math

Now let us “prove” the formula mentioned in the “Details” section by calculating the proper Stirling numbers:

combinat::stirling1(6,1);

combinat::stirling1(6,2);

combinat::stirling1(6,3);

combinat::stirling1(6,4);

combinat::stirling1(6,5);

combinat::stirling1(6,6)

math

math

math

math

math

math

Example 2:

combinat::stirling1(3,-1)

Error:  Arguments must be nonnegative integers. [combinat::stirling1]