Cat::FiniteGroupInvariantRing – the category of invariant rings of finite groups of matrices over a field

Cat::FiniteGroupInvariantRing(R) represents the category of invariant rings of finite groups of matrices over a field R, that is ....

Creating the Category

Cat::FiniteGroupInvariantRing(R)

Parameters:

R

A Cat::Field.

Categories

Cat::Algebra(R)

Details:

A Cat::FiniteGroupInvariantRing(R) is a.

Entries

"variables"

returns the list of .

"group"

returns the group.

"dimen"

returns a .

"Poly"

returns the .

"isModular"

this entry states the characteristic

"isCohenMacaulay"

this entry states whether the invariant ring is Cohen-Macaulay, that is, whether the invariant ring is free module over the primary invariants.It can be UNKNOWN.

"primaryInvariantsDegrees"

returns the permutation in cycle representation (list of its cycles).

"secondaryInvariantsSeries"

.....

primaryInvariantsSeries – generating series of the primary invariants

Cat::FiniteGroupInvariantRing::primaryInvariantsSeries(variable z)

Returns the generating series of the primary invariants, defined by f(z):=sum(z^d, d in degrees of primary invariants)

primaryInvariantsRingSeries – generating series of the ring generated by the primary invariants

Cat::FiniteGroupInvariantRing::primaryInvariantsRingSeries(variable z)

Returns the generating series of the primary invariants, defined by ...

HilbertSeries_Molien – ...

Cat::FiniteGroupInvariantRing::HilbertSeries_Molien(variable z)

Computes the Hilbert series of the invariant ring under the action of the group, using Molien formula.

Reference: Sturmfels Älgorithms in Invariant Theory", p 29 / p 72.

HilbertSeries_FromSecondary – ...

Cat::FiniteGroupInvariantRing::HilbertSeries_FromSecondary(variable z)

Returns the ...

HilbertSeries – ...

Cat::FiniteGroupInvariantRing::HilbertSeries(variable z)

Returns the ...

mu – lowest degree of an invariant

Cat::FiniteGroupInvariantRing::mu()

Returns the lowest degree of an invariant relative to the linear caracter math. This is also the difference between the highest degree of a secondary and the bound given by the degrees of the primary invariants.

Reference: Stanley "Invariants of Finite Groups and Their Applications to Combinatorics" (1979), p. 485.