*----*    MuPAD Pro 4.0.0 -- The Open Computer Algebra System
  /|   /|
 *----* |    Copyright (c)  1997 - 2006  by SciFace Software
 | *--|-*                   All rights reserved.
 |/   |/
 *----*      Licensed to:   MuPAD Combinat Developer


 +---+
 | T |             MuPAD-Combinat 1.3.3 (development)
 +---+---+
 | A | K |         an open source MuPAD package for
 +---+---+---+
     | I | N |    research in Algebraic Combinatorics
     +---+---+

This package provides or extends the following libraries:
  combinat, examples, Dom, Cat, output, experimental, IPC, operators

For quick information on a particular library, please type:
  info(library)   or   ?library   (requires MuPAD >= 4.0.0)

For the full html documentation, please browse through:
  http://mupad-combinat.sf.net/ (project web page)
  file:./index.html (local mirror)

-- Interface:
packages::Combinat::dotCategories, packages::Combinat::help,
packages::Combinat::viewDot,       packages::Combinat::viewDotTeX,
packages::Combinat::viewTeX                                       
>> TEXTWIDTH:=128:
>> 1+1

                                                               2
DOM_INT                                                                                                                     0 ms
>> export(combinat):
>> trees::list(5)

                          --   o  ,  o ,  o ,  o  ,  o ,  o ,  o ,   o ,  o ,  o ,  o ,  o ,  o , o --
                          |  // \\  /|\  /|\  / \   / \  /|\  / \   / \  / \   |    |    |    |   |  |
                          |           |   |     /\    |  |    | |  /\    |    /|\  / \  / \   |   |  |
                          |                           |                  |           |  |    / \  |  |
                          --                                                                      | --
DOM_LIST                                                                                                                  364 ms
>> trees::count(5)

                                                               14
DOM_INT                                                                                                                     0 ms
>> trees::random(50)

                                                                      o
                                                                      |
                                                                  /  / \\
                                                                 /  \|  /\
                                                      /  /       |\\     |
                                                       //  \    \
                                                        |  |    |
                                                       / \ |   /|\
                                                          / \    |
                                                            |
                                                           /  \
                                                          /|\ |
                                                            |/ \
                                                            | / \
                                                               /|\
                                                               |
combinat::trees                                                                                                            92 ms
>> r := binaryTrees::grammar::recurrenceRelation():
>>  assume(n>0):
>>  u(n) = factor(op(solve(r, u(n)),1))

                                                         2 u(n - 1) (2 n - 1)
                                                  u(n) = --------------------
                                                                 n + 1
DOM_EXPR                                                                                                                  112 ms
>> C1 := crystals::kirillovReshetikhin(2,2,["A",2,1]):
>>  C2 := crystals::kirillovReshetikhin(1,1,["A",2,1]):
>> C1::list()

                             -- +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+ --
                             |  | 2 | 2 |  | 2 | 3 |  | 2 | 3 |  | 3 | 3 |  | 3 | 3 |  | 3 | 3 |  |
                             |  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  |
                             |  | 1 | 1 |, | 1 | 1 |, | 1 | 2 |, | 1 | 1 |, | 1 | 2 |, | 2 | 2 |  |
                             -- +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+ --
DOM_LIST                                                                                                                  164 ms
>> operators::setTensorSymbol("#"):
>> C := C1 # C2:
>>  viewTeX(C::TeXClass())
>> C1::isomorphisms(C1)

                                                      [proc g(x) ... end]
DOM_LIST                                                                                                                  108 ms
>> C1::isomorphisms(C1)

                                                      [proc g(x) ... end]
DOM_LIST                                                                                                                   92 ms
>> C1::isomorphisms(C2)

                                                               []
DOM_LIST                                                                                                                   12 ms
>> viewTeX(packages::Combinat::categoryTeX())
>> read("experimental/2005-09-08-David.mu"):
//////////////////////////////////////////////////////////////////////
Loading worksheet: Twisted Kac algebras
Cf.  p. 715 of '2-cocycles and twisting of Kac algebras'

Version: $Id: 2005-09-08-David.mu 7092 2007-11-03 06:38:41Z nthiery $
To update to the latest version, go to the MuPAD-Combinat directory and type:
       svn update
Content:
  G := DihedralGroup(4)
  SkewTensorProduct(A, B)	-- Skew tensor product of A and B (A being the dual of B)
  coidealDual([ p ])	-- Basis of the dual of the left coideal generated by p

  TwistedDihedralGroupAlgebra:
    KD4 := TwistedDihedralGroupAlgebra(4):
    KD4 := KD(4):			-- shortcut
    KD4::G = KD4::group			-- KD4 expressed on group elements
    KD4::G([3,1])			-- a^3 b
    KD4::M = KD4::matrix		-- KD4 expressed as block diagonal matrices
    KD4::G::tensorSquare		-- the tensor product KD4::G # KD4::G
    KD4::M::tensorSquare		--

    KD4::coeffRing			-- the coefficient field
    KD4::coeffRing::primitiveUnitRoot(4)-- the complex value I

    KD4::M(x), KD4::G(x)		-- conversions between bases
    KD4::e(1), KD4::e(2,2,1)		-- matrix units
    KD4::p(2,2,j), KD4::r(2,2,j)	-- some projectors of the j-th block
    KD4::p1, KD4::p2, KD4::q1, KD4::q1	-- some projectors
    KD4::G::Omega			-- Omega in the group basis
    KD4::M::tensorSquare( KD4::G::Omega )-- Omega in the matrix basis
    KD4::M::coproductAsMatrix(e(1))	-- the coproduct of e(1) as a matrix

    KD4::automorphismReverseOddBlocks   -- some (potential) automorphisms
    KD4::automorphismTransposeEvenBlocks--
    KD4::automorphismTransposeOddBlocks -- (not an automorphism for KD4!)

    // To get shorter notations:
    export(KD4, Alias, e, p1, p2, q1, q2):
    alias(view = KD4::M::coproductAsMatrix):
    // Then you can do:
    e(2,2,1) ...
    view(e(1))

  TwistedQuaternionGroupAlgebra(N)
    KQ4 := TwistedDihedralGroupAlgebra(4):
    KQ4 := KD(4):		-- shortcut
    Same usage as for KD(N)

  algebraClosure([a,b,c])
  coidealClosure([a,b,c])
  coidealAndAlgebraClosure([a,b,c])
  echelonForm([a,b,c], Reduced)
  Isomorphism KD(2N) <-> KQ(2N)
  The most natural isomorphism, in the G basis:
   KQ4::G(KD4::G([1,0])):              -- The image of a of KD4 in KQ4
   KD4::G(KQ4::G([0,1])):              -- The image of b of KQ4 in KD4

  The 8 possible isomorphisms in the M basis:
   phi := isomorphismKDMKQM(4, 3, TRUE)-- isomorphism KD(4)::M -> KQ(4)::M
   KD4::M::isHopfAlgebraMorphism(f);
   inv := KD4::M::inverseOfModuleMorphism(phi);
   KQ4::M::isHopfAlgebraMorphism(inv);


A sample computation:
  M := KQ(4):
  Fbasis := coidealAndAlgebraClosure([M::e(1) + M::e(2)]):
  F := Dom::SubFreeModule(Fbasis, [Cat::FiniteDimensionalHopfAlgebraWithBasis(M::coeffRing)]):
  Fdual := Dom::DualOfFreeModule(F):
  G := Fdual::intrisicGroup():
  G::list();   // C'est le groupe dihedral D4

//////////////////////////////////////////////////////////////////////
>> KD3 := KD(3)

                                                     KD(3, Q(II, epsilon))
DOM_DOMAIN                                                                                                                460 ms
>> KD3 := KD(3)

                                                     KD(3, Q(II, epsilon))
DOM_DOMAIN                                                                                                                 32 ms
>> [aa,bb] := KD3::group::algebraGenerators::list()

                                                          [B(a), B(b)]
DOM_LIST                                                                                                                    8 ms
>> bb^2

                                                              B(1)
(KD(3, Q(II, epsilon)))::G                                                                                                 12 ms
>> aa^2, aa^6, bb*aa

                                                         2            5
                                                      B(a ), B(1), B(a  b)
(KD(3, Q(II, epsilon)))::G                                                                                                  4 ms
>> (1 - aa^3)*(bb + aa^3) + 1/2*bb*aa^3

                                                                 3            3
                                             -1 B(1) + B(b) + B(a ) + -1/2 B(a  b)
(KD(3, Q(II, epsilon)))::G                                                                                                 32 ms
>> KD3::M(aa + 2*bb)

                                +-                                                           -+
                                |  3,  0,  0, 0,    0,         0,           0,          0     |
                                |                                                             |
                                |  0, -1,  0, 0,    0,         0,           0,          0     |
                                |                                                             |
                                |  0,  0, -3, 0,    0,         0,           0,          0     |
                                |                                                             |
                                |  0,  0,  0, 1,    0,         0,           0,          0     |
                                |                                                             |
                                |  0,  0,  0, 0, epsilon,      2,           0,          0     |
                                |                                                             |
                                |  0,  0,  0, 0,    2,    1 - epsilon,      0,          0     |
                                |                                                             |
                                |  0,  0,  0, 0,    0,         0,      epsilon - 1,     2     |
                                |                                                             |
                                |  0,  0,  0, 0,    0,         0,           2,      -epsilon  |
                                +-                                                           -+
(KD(3, Q(II, epsilon)))::M                                                                                                 52 ms
>> KD3::group(KD3::M(aa + 2*bb))

                                                         2 B(b) + B(a)
(KD(3, Q(II, epsilon)))::G                                                                                                268 ms
>> coproduct(aa^4), coproduct(bb)

                   /   II        \                                 2    /   II        \           2                     4
3/16 B(a) # B(a) + | - -- - 1/16 | B(a) # B(a b) + -1/16 B(a) # B(a ) + | - -- - 1/16 | B(a) # B(a  b) + 3/16 B(a) # B(a ) +
                   \    8        /                                      \    8        /

   / II        \           4                      5    / II        \           5      / II        \
   | -- - 1/16 | B(a) # B(a  b) + -1/16 B(a) # B(a ) + | -- - 1/16 | B(a) # B(a  b) + | -- - 1/16 | B(a b) # B(a) +
   \  8        /                                       \  8        /                  \  8        /

                          /   II        \             2                     2                       4
   1/16 B(a b) # B(a b) + | - -- - 1/16 | B(a b) # B(a ) + 1/16 B(a b) # B(a  b) + 1/16 B(a b) # B(a ) +
                          \    8        /

   /   II        \             4                       5    / II        \             5               2
   | - -- - 1/16 | B(a b) # B(a  b) + 1/16 B(a b) # B(a ) + | -- - 1/16 | B(a b) # B(a  b) + -1/16 B(a ) # B(a) +
   \    8        /                                          \  8        /

   / II        \    2                     2       2    / II        \    2       2              2       4
   | -- - 1/16 | B(a ) # B(a b) + 3/16 B(a ) # B(a ) + | -- - 1/16 | B(a ) # B(a  b) + 3/16 B(a ) # B(a ) +
   \  8        /                                       \  8        /

   /   II        \    2       4               2       5    /   II        \    2       5      / II        \    2
   | - -- - 1/16 | B(a ) # B(a  b) + -1/16 B(a ) # B(a ) + | - -- - 1/16 | B(a ) # B(a  b) + | -- - 1/16 | B(a  b) # B(a) +
   \    8        /                                         \    8        /                   \  8        /

           2               /   II        \    2         2            2         2              2         4
   1/16 B(a  b) # B(a b) + | - -- - 1/16 | B(a  b) # B(a ) + 1/16 B(a  b) # B(a  b) + 1/16 B(a  b) # B(a ) +
                           \    8        /

   / II        \    2         4              2         5    /   II        \    2         5              4
   | -- - 1/16 | B(a  b) # B(a  b) + 1/16 B(a  b) # B(a ) + | - -- - 1/16 | B(a  b) # B(a  b) + 3/16 B(a ) # B(a) +
   \  8        /                                            \    8        /

           4                     4       2            4       2              4       4            4       4
   1/16 B(a ) # B(a b) + 3/16 B(a ) # B(a ) + 1/16 B(a ) # B(a  b) + 7/16 B(a ) # B(a ) + 1/16 B(a ) # B(a  b) +

            4       5            4       5      /   II        \    4             / II        \    4
   -1/16 B(a ) # B(a ) + 1/16 B(a ) # B(a  b) + | - -- - 1/16 | B(a  b) # B(a) + | -- - 1/16 | B(a  b) # B(a b) +
                                                \    8        /                  \  8        /

   / II        \    4         2    /   II        \    4         2              4         4            4         4
   | -- - 1/16 | B(a  b) # B(a ) + | - -- - 1/16 | B(a  b) # B(a  b) + 1/16 B(a  b) # B(a ) + 1/16 B(a  b) # B(a  b) +
   \  8        /                   \    8        /

           4         5            4         5               5                   5                      5       2
   1/16 B(a  b) # B(a ) + 1/16 B(a  b) # B(a  b) + -1/16 B(a ) # B(a) + 1/16 B(a ) # B(a b) + -1/16 B(a ) # B(a ) +

           5       2               5       4            5       4               5       5            5       5
   1/16 B(a ) # B(a  b) + -1/16 B(a ) # B(a ) + 1/16 B(a ) # B(a  b) + -1/16 B(a ) # B(a ) + 1/16 B(a ) # B(a  b) +

   /   II        \    5             /   II        \    5               / II        \    5         2
   | - -- - 1/16 | B(a  b) # B(a) + | - -- - 1/16 | B(a  b) # B(a b) + | -- - 1/16 | B(a  b) # B(a ) +
   \    8        /                  \    8        /                    \  8        /

   / II        \    5         2              5         4            5         4              5         5
   | -- - 1/16 | B(a  b) # B(a  b) + 1/16 B(a  b) # B(a ) + 1/16 B(a  b) # B(a  b) + 1/16 B(a  b) # B(a ) +
   \  8        /

           5         5
   1/16 B(a  b) # B(a  b), B(b) # B(b)
(KD(3, Q(II, epsilon)))::G # (KD(3, Q(II, epsilon)))::G                                                                   488 ms
>> coproduct(aa)

                                                        2                   2                     4                   4
7/16 B(a) # B(a) + 1/16 B(a) # B(a b) + -1/16 B(a) # B(a ) + 1/16 B(a) # B(a  b) + 3/16 B(a) # B(a ) + 1/16 B(a) # B(a  b) +

                  5                   5                                                                   2
   3/16 B(a) # B(a ) + 1/16 B(a) # B(a  b) + 1/16 B(a b) # B(a) + 1/16 B(a b) # B(a b) + 1/16 B(a b) # B(a ) +

                    2      /   II        \             4    / II        \             4      / II        \             5
   1/16 B(a b) # B(a  b) + | - -- - 1/16 | B(a b) # B(a ) + | -- - 1/16 | B(a b) # B(a  b) + | -- - 1/16 | B(a b) # B(a ) +
                           \    8        /                  \  8        /                    \  8        /

   /   II        \             5               2                   2                      2       2            2       2
   | - -- - 1/16 | B(a b) # B(a  b) + -1/16 B(a ) # B(a) + 1/16 B(a ) # B(a b) + -1/16 B(a ) # B(a ) + 1/16 B(a ) # B(a  b) +
   \    8        /

            2       4            2       4               2       5            2       5              2
   -1/16 B(a ) # B(a ) + 1/16 B(a ) # B(a  b) + -1/16 B(a ) # B(a ) + 1/16 B(a ) # B(a  b) + 1/16 B(a  b) # B(a) +

           2                       2         2            2         2      /   II        \    2         4
   1/16 B(a  b) # B(a b) + 1/16 B(a  b) # B(a ) + 1/16 B(a  b) # B(a  b) + | - -- - 1/16 | B(a  b) # B(a ) +
                                                                           \    8        /

   /   II        \    2         4      / II        \    2         5    / II        \    2         5              4
   | - -- - 1/16 | B(a  b) # B(a  b) + | -- - 1/16 | B(a  b) # B(a ) + | -- - 1/16 | B(a  b) # B(a  b) + 3/16 B(a ) # B(a) +
   \    8        /                     \  8        /                   \  8        /

   / II        \    4                      4       2    / II        \    4       2              4       4
   | -- - 1/16 | B(a ) # B(a b) + -1/16 B(a ) # B(a ) + | -- - 1/16 | B(a ) # B(a  b) + 3/16 B(a ) # B(a ) +
   \  8        /                                        \  8        /

   /   II        \    4       4               4       5    /   II        \    4       5              4
   | - -- - 1/16 | B(a ) # B(a  b) + -1/16 B(a ) # B(a ) + | - -- - 1/16 | B(a ) # B(a  b) + 1/16 B(a  b) # B(a) +
   \    8        /                                         \    8        /

   /   II        \    4                       4         2    / II        \    4         2      / II        \    4         4
   | - -- - 1/16 | B(a  b) # B(a b) + 1/16 B(a  b) # B(a ) + | -- - 1/16 | B(a  b) # B(a  b) + | -- - 1/16 | B(a  b) # B(a ) +
   \    8        /                                           \  8        /                     \  8        /

           4         4      /   II        \    4         5            4         5              5
   1/16 B(a  b) # B(a  b) + | - -- - 1/16 | B(a  b) # B(a ) + 1/16 B(a  b) # B(a  b) + 3/16 B(a ) # B(a) +
                            \    8        /

   /   II        \    5                      5       2    /   II        \    5       2               5       4
   | - -- - 1/16 | B(a ) # B(a b) + -1/16 B(a ) # B(a ) + | - -- - 1/16 | B(a ) # B(a  b) + -1/16 B(a ) # B(a ) +
   \    8        /                                        \    8        /

   / II        \    5       4              5       5    / II        \    5       5              5
   | -- - 1/16 | B(a ) # B(a  b) + 3/16 B(a ) # B(a ) + | -- - 1/16 | B(a ) # B(a  b) + 1/16 B(a  b) # B(a) +
   \  8        /                                        \  8        /

   / II        \    5                       5         2    /   II        \    5         2      / II        \    5         4
   | -- - 1/16 | B(a  b) # B(a b) + 1/16 B(a  b) # B(a ) + | - -- - 1/16 | B(a  b) # B(a  b) + | -- - 1/16 | B(a  b) # B(a ) +
   \  8        /                                           \    8        /                     \  8        /

           5         4      /   II        \    5         5            5         5
   1/16 B(a  b) # B(a  b) + | - -- - 1/16 | B(a  b) # B(a ) + 1/16 B(a  b) # B(a  b)
                            \    8        /
(KD(3, Q(II, epsilon)))::G # (KD(3, Q(II, epsilon)))::G                                                                   252 ms
>> KD3::G::antipode

                                               proc moduleMorphism(f)(x) ... end
DOM_PROC                                                                                                                    0 ms
>> KD3::G::moduleMorphismMatrix(KD3::G::antipode)

                                            +-                                    -+
                                            |  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0  |
                                            |                                      |
                                            |  0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0  |
                                            |                                      |
                                            |  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0  |
                                            |                                      |
                                            |  0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0  |
                                            |                                      |
                                            |  0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0  |
                                            |                                      |
                                            |  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0  |
                                            |                                      |
                                            |  0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0  |
                                            |                                      |
                                            |  0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0  |
                                            |                                      |
                                            |  0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0  |
                                            |                                      |
                                            |  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0  |
                                            |                                      |
                                            |  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0  |
                                            |                                      |
                                            |  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1  |
                                            +-                                    -+
Dom::Matrix(Q(II, epsilon))                                                                                               116 ms
>> KD3::G::kernelOfModuleMorphism(KD3::G::antipode)

                                                               []
DOM_LIST                                                                                                                   44 ms
>> checkAntipode := KD3::G::mu @ ( KD3::G::id # KD3::G::antipode ) @ KD3::G::coproduct:
>> checkAntipode(x) $ x in KD3::G::basis::list()

                             B(1), B(1), B(1), B(1), B(1), B(1), B(1), B(1), B(1), B(1), B(1), B(1)
(KD(3, Q(II, epsilon)))::G                                                                                            1 s 812 ms
>> e := KD3::e:
>> e(1)+e(2)

                                                  +-                        -+
                                                  |  1, 0, 0, 0, 0, 0, 0, 0  |
                                                  |                          |
                                                  |  0, 1, 0, 0, 0, 0, 0, 0  |
                                                  |                          |
                                                  |  0, 0, 0, 0, 0, 0, 0, 0  |
                                                  |                          |
                                                  |  0, 0, 0, 0, 0, 0, 0, 0  |
                                                  |                          |
                                                  |  0, 0, 0, 0, 0, 0, 0, 0  |
                                                  |                          |
                                                  |  0, 0, 0, 0, 0, 0, 0, 0  |
                                                  |                          |
                                                  |  0, 0, 0, 0, 0, 0, 0, 0  |
                                                  |                          |
                                                  |  0, 0, 0, 0, 0, 0, 0, 0  |
                                                  +-                        -+
(KD(3, Q(II, epsilon)))::M                                                                                                 28 ms
>> K2basis := coidealAndAlgebraClosure([ e(1)+e(2) ])

-- +-                        -+  +-                        -+  +-                         -+  +-                        -+
|  |  1, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0,  0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |
|  |                          |  |                          |  |                           |  |                          |
|  |  0, 1, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0,  0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |
|  |                          |  |                          |  |                           |  |                          |
|  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 1, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0,  0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |
|  |                          |  |                          |  |                           |  |                          |
|  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 1, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0,  0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |
|  |                          |, |                          |, |                           |, |                          |,
|  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, -1, 0, 0  |  |  0, 0, 0, 0, 1, 0, 0, 0  |
|  |                          |  |                          |  |                           |  |                          |
|  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 1,  0, 0, 0  |  |  0, 0, 0, 0, 0, 1, 0, 0  |
|  |                          |  |                          |  |                           |  |                          |
|  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0,  0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |
|  |                          |  |                          |  |                           |  |                          |
|  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0,  0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |
-- +-                        -+  +-                        -+  +-                         -+  +-                        -+

   +-                        -+  +-                        -+ --
   |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |
   |                          |  |                          |  |
   |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |
   |                          |  |                          |  |
   |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |
   |                          |  |                          |  |
   |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |
   |                          |, |                          |  |
   |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |
   |                          |  |                          |  |
   |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |
   |                          |  |                          |  |
   |  0, 0, 0, 0, 0, 0, 1, 0  |  |  0, 0, 0, 0, 0, 0, 0, 0  |  |
   |                          |  |                          |  |
   |  0, 0, 0, 0, 0, 0, 0, 0  |  |  0, 0, 0, 0, 0, 0, 0, 1  |  |
   +-                        -+  +-                        -+ --
DOM_LIST                                                                                                             11 s 953 ms
>> expose(KD3::G::algebraClosure)

proc(generators : Type::ListOf((TwistedDihedralGroupAlgebra(3, Q(II, epsilon)))::G)) : Type::ListOf((TwistedDihedralGroupAlgebr\
a(3, Q(II, epsilon)))::G)
  name (TwistedDihedralGroupAlgebra(3, Q(II, epsilon)))::G::algebraClosure;
begin
  userinfo(3, "Computing the (non unital!) algebra closure");
  dom::moduleClosure(generators, [proc(x : dom) : Type::SequenceOf(dom)
    local generator;
  begin
    x*generator $ generator in generators
  end_proc])
end_proc

stdlib::Exposed                                                                                                             4 ms
>> K2 := Dom::SubFreeModule(K2basis,
>>                       [Cat::FiniteDimensionalHopfAlgebraWithBasis(KD3::coeffRing)]):
>> K2::isCommutative(), K2::isCocommutative()

                                                          TRUE, FALSE
DOM_BOOL                                                                                                                  108 ms
>> K2dual := K2::Dual():
>> K2dual::groupLikeElements()

               [B([3, 3]), B([1, 1]), B([8, 8]), B([7, 7]), -II B([6, 5]) + B([5, 5]), II B([6, 5]) + B([5, 5])]
DOM_LIST                                                                                                                  948 ms
>> G := K2dual::intrisicGroup():
>>  G::list()

                                           [[], [1], [1, 1], [2], [1, 2], [1, 1, 2]]
DOM_LIST                                                                                                                    4 ms
>> K2dual::isSemiSimple()

                                                              TRUE
DOM_BOOL                                                                                                                   60 ms
>> K2dual::simpleModulesDimensions()

                                                           [2, 1, 1]
DOM_LIST                                                                                                                  620 ms
>> reset():

 +---+
 | T |             MuPAD-Combinat 1.3.3 (development)
 +---+---+
 | A | K |         an open source MuPAD package for
 +---+---+---+
     | I | N |    research in Algebraic Combinatorics
     +---+---+

This package provides or extends the following libraries:
  combinat, examples, Dom, Cat, output, experimental, IPC, operators

For quick information on a particular library, please type:
  info(library)   or   ?library   (requires MuPAD >= 4.0.0)

For the full html documentation, please browse through:
  http://mupad-combinat.sf.net/ (project web page)
  file:./index.html (local mirror)

-- Interface:
packages::Combinat::dotCategories, packages::Combinat::help,
packages::Combinat::viewDot,       packages::Combinat::viewDotTeX,
packages::Combinat::viewTeX                                       
>> operators::setTensorSymbol("#"):
>>  export(operators, coproduct):
>>  S := examples::SymmetricFunctions():
>>  S::Name := hold(S):
>> operators::setTensorSymbol("#"):
>>  export(operators, coproduct):
>>  S := examples::SymmetricFunctions():
>>  S::Name := hold(S):
>> viewTeX((operators::overloaded::conversionGraph())::TeX()):
>> Mcd := S::Macdonald(q,t):
>>  QSym := examples::QuasiSymmetricFunctions():
>>  QSym::Name := hold(QSym): QSym::fixBasesNames():
>>  NCSF := examples::NonCommutativeSymmetricFunctions():
>>  NCSF::Name := hold(NCSF): NCSF::fixBasesNames():
>>  viewTeX((operators::overloaded::conversionGraph())::TeX(), "conversion.pdf"):
>>