
The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

MuPAD-Combinat
Implementing Algebraic Combinatorics

Some feedback from the development of MuPAD-Combinat

Nicolas M. Thiéry and al.

Laboratoire de Mathématiques d’Orsay, Université Paris Sud

April 27-th 2006
mupad-combinat-devel@lists.sf.net
http://mupad-combinat.sf.net/

http://mupad-combinat.sf.net/

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

MuPAD-Combinat figures

• 8 developers, 20 contributers

• 15+ research articles

• Official MuPAD combinat library since 2002

• 5 years, 9 official releases, 4 stable ones

• GNU/Linux, MacOS X, Windows, Zaurus

• 76000 lines of MuPAD + 15000 lines of C++

• 20000 lines of tests, 575 pages of doc

• In 2005: 1500 messages on the mailing list, 5000 visits of the
web page and 400 downloads.

• Integrated software: µ-EC, CS, PerMuVAR, Symmetrica,
lrcalc, Nauty, rigged configuration kernel

• How many users?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Why am I here?

Feasibility of Axiom-Combinat?

• Users asked for it

• Sympathy to an open source project

MuPAD-Combinat community?

• Future of MuPAD?

• Quality of the Axiom/Aldor language

• Improving the MuPAD-Combinat design

• Fostering cross pollination
(code, tests, documentation, expertise, design, interface)

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Why am I here?

Feasibility of Axiom-Combinat?

• Users asked for it

• Sympathy to an open source project

MuPAD-Combinat community?

• Future of MuPAD?

• Quality of the Axiom/Aldor language

• Improving the MuPAD-Combinat design

• Fostering cross pollination
(code, tests, documentation, expertise, design, interface)

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Motivations: a Loday-Ronco calculator

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Our needs

• Tools:
• Manipulation of all sorts of combinatorial objects

(counting, generation, random generation, ranking, ...)
• Computations in combinatorial algebraic structures

(Hopf algebras, modules, operads, ...)
• Standard CAS stuff (solvers, ...)

• Rapid development of calculators for computer exploration:
• Interpreter (compiler is a bonus)
• Expressive and natural syntax
• Generic tools

• Keep time to do maths!
• Code sharing

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. Experiment / Design / Experiment / Design

2. Support tools:
• Counting functions

(lazy Karatsuba product, plethysm, implicit equation)
• Generators, continuations
• Data structures for combinatorial objects

(partitions, trees, tableaux, permutations, graphs, ...)

3. Combinatorial class lego:
• Basic combinatorial classes (finite classes, integers, ...)
• Functors (union, product, graded products, multisets, image

class, implicit equations)

4. Other generic tools:
• Linear extensions of a poset
• Lexicographic enumeration of list of integers
• Integral points of a polyhedron

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. Experiment / Design / Experiment / Design

2. Support tools:
• Counting functions

(lazy Karatsuba product, plethysm, implicit equation)
• Generators, continuations
• Data structures for combinatorial objects

(partitions, trees, tableaux, permutations, graphs, ...)

3. Combinatorial class lego:
• Basic combinatorial classes (finite classes, integers, ...)
• Functors (union, product, graded products, multisets, image

class, implicit equations)

4. Other generic tools:
• Linear extensions of a poset
• Lexicographic enumeration of list of integers
• Integral points of a polyhedron

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. Experiment / Design / Experiment / Design

2. Support tools:
• Counting functions

(lazy Karatsuba product, plethysm, implicit equation)
• Generators, continuations
• Data structures for combinatorial objects

(partitions, trees, tableaux, permutations, graphs, ...)

3. Combinatorial class lego:
• Basic combinatorial classes (finite classes, integers, ...)
• Functors (union, product, graded products, multisets, image

class, implicit equations)

4. Other generic tools:
• Linear extensions of a poset
• Lexicographic enumeration of list of integers
• Integral points of a polyhedron

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. Experiment / Design / Experiment / Design

2. Support tools:
• Counting functions

(lazy Karatsuba product, plethysm, implicit equation)
• Generators, continuations
• Data structures for combinatorial objects

(partitions, trees, tableaux, permutations, graphs, ...)

3. Combinatorial class lego:
• Basic combinatorial classes (finite classes, integers, ...)
• Functors (union, product, graded products, multisets, image

class, implicit equations)

4. Other generic tools:
• Linear extensions of a poset
• Lexicographic enumeration of list of integers
• Integral points of a polyhedron

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. FreeModule(Combinatorial Class, Coefficient Ring)
Categories: AlgebraWithBasis and friends
Support for seamless linear algebra
Unification with polynomials, ...

2. Modules with several bases, ...

3. Functors: tensor product, tensor, exterior, and symmetric
algebra, submodules, quotients

4. Generic Gröbner/Involutive elimination tools

5. Permutation groups with basic Shreier-Simms algorithms

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. FreeModule(Combinatorial Class, Coefficient Ring)
Categories: AlgebraWithBasis and friends
Support for seamless linear algebra
Unification with polynomials, ...

2. Modules with several bases, ...

3. Functors: tensor product, tensor, exterior, and symmetric
algebra, submodules, quotients

4. Generic Gröbner/Involutive elimination tools

5. Permutation groups with basic Shreier-Simms algorithms

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. FreeModule(Combinatorial Class, Coefficient Ring)
Categories: AlgebraWithBasis and friends
Support for seamless linear algebra
Unification with polynomials, ...

2. Modules with several bases, ...

3. Functors: tensor product, tensor, exterior, and symmetric
algebra, submodules, quotients

4. Generic Gröbner/Involutive elimination tools

5. Permutation groups with basic Shreier-Simms algorithms

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. FreeModule(Combinatorial Class, Coefficient Ring)
Categories: AlgebraWithBasis and friends
Support for seamless linear algebra
Unification with polynomials, ...

2. Modules with several bases, ...

3. Functors: tensor product, tensor, exterior, and symmetric
algebra, submodules, quotients

4. Generic Gröbner/Involutive elimination tools

5. Permutation groups with basic Shreier-Simms algorithms

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Steps to build a *-Combinat package

1. FreeModule(Combinatorial Class, Coefficient Ring)
Categories: AlgebraWithBasis and friends
Support for seamless linear algebra
Unification with polynomials, ...

2. Modules with several bases, ...

3. Functors: tensor product, tensor, exterior, and symmetric
algebra, submodules, quotients

4. Generic Gröbner/Involutive elimination tools

5. Permutation groups with basic Shreier-Simms algorithms

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

How to model a combinatorial class?

Examples:

• List Integer l := [1, 5, 9];

• {x2, x ∈ 1, . . . , 10}
• Integer, Odd Integer

• Integer partitions, trees

• Finite field F2

• Permutation group G ⊂ S4

Clear separation:

• Data structure and operations on the elements of the set

• Data structure and operations on the set

Two questions for a combinatorial class C :

• Should C be represented by an object or by a domain?

• If x ∈ C , should the type of x be C?

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Decomposable combinatorial classes / Species

combinat::decomposableObjects([
Tree = Union(Leaf, NonTrivialTree),
NonTrivialTree = Product(Label, Childs),
Childs = Product(Tree, Tree)]):

NonTrivialTree: CombinatorialClass;
Tree := Union (Leaf, NonTrivialTree);
NonTrivialTree := Product(Label, Childs)
Childs := Product(Tree, Tree);

• Modularity, extensibility, use of the system parser

• Integration with the rest of the system, sharing

• Systematic use of a virtual wrapper?

• Generalize to other gradings

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Decomposable combinatorial classes / Species

combinat::decomposableObjects([
Tree = Union(Leaf, NonTrivialTree),
NonTrivialTree = Product(Label, Childs),
Childs = Product(Tree, Tree)]):

NonTrivialTree: CombinatorialClass;
Tree := Union (Leaf, NonTrivialTree);
NonTrivialTree := Product(Label, Childs)
Childs := Product(Tree, Tree);

• Modularity, extensibility, use of the system parser

• Integration with the rest of the system, sharing

• Systematic use of a virtual wrapper?

• Generalize to other gradings

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Decomposable combinatorial classes / Species

combinat::decomposableObjects([
Tree = Union(Leaf, NonTrivialTree),
NonTrivialTree = Product(Label, Childs),
Childs = Product(Tree, Tree)]):

NonTrivialTree: CombinatorialClass;
Tree := Union (Leaf, NonTrivialTree);
NonTrivialTree := Product(Label, Childs)
Childs := Product(Tree, Tree);

• Modularity, extensibility, use of the system parser

• Integration with the rest of the system, sharing

• Systematic use of a virtual wrapper?

• Generalize to other gradings

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

First experiment: decomposable classes

Count and generator for:

• Epsilon (contains one element ”epsilon”of size 0)

• Atom (contains one element ”atom”of size 1)

• Integers, PositiveIntegers

• Union(A,B)

• Product(A,B)

Examples of use:

• Atom::count(1): (yields 1)

• Atom::list(1): (yields [”atom”])

• PositiveIntegers::count(): (yields infinity)

• PositiveIntegers::count(3): (yields 1)

• PositiveIntegers::list(3): (yields [3])

• IntegerVectors := Product(PositiveIntegers,PositiveIntegers)

• Comps := Union(Epsilon, Product(PositiveIntegers, Comps))

• Trees := Union(Atom, Product(Trees, Trees))

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

First experiment: decomposable classes

Count and generator for:

• Epsilon (contains one element ”epsilon”of size 0)

• Atom (contains one element ”atom”of size 1)

• Integers, PositiveIntegers

• Union(A,B)

• Product(A,B)

Examples of use:

• Atom::count(1): (yields 1)

• Atom::list(1): (yields [”atom”])

• PositiveIntegers::count(): (yields infinity)

• PositiveIntegers::count(3): (yields 1)

• PositiveIntegers::list(3): (yields [3])

• IntegerVectors := Product(PositiveIntegers,PositiveIntegers)

• Comps := Union(Epsilon, Product(PositiveIntegers, Comps))

• Trees := Union(Atom, Product(Trees, Trees))

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Objects with several representations

• We need automatic coercion (implicit conversions)

• At interactive-level and inside code

• Possibly with > 1000 domains simultaneously

Problem: find the appropriate setting with the right balance

• Safety

• Practicalness

• Efficiency

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

Specificities of the MuPAD language

• Types are on values, not on variables:
• Notion of facade domain

• You choose the level of strictness

• Copy semantic (no reference effect, except with closures or
domains)

• No name-based overloading of functions:
• Clumsy notation for method calling
• Tendency to not overload functions
• No overloading of methods

• No optimization (compiler / ...); no inlining:
• Tendency to avoid wrappers (BAD!)

• Functions and domains are not strongly typed

• Almost no garbage collection of domains

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

And now?

What’s the goal?

• How much work power?

• How many potential user?

• What are their needs?

• Aldor-Combinat? Axiom-Combinat?

How to proceed?

• Select specific goals with high value/time ratio

• Setup the stage: coding party

• Fill in the holes: progressively, while you need them

The MuPAD-Combinat project Motivations Building a *-Combinat package? Design issues

And now?

What’s the goal?

• How much work power?

• How many potential user?

• What are their needs?

• Aldor-Combinat? Axiom-Combinat?

How to proceed?

• Select specific goals with high value/time ratio

• Setup the stage: coding party

• Fill in the holes: progressively, while you need them

